
Abstract: Limit of detection (LOD) issues are ubiquitous in expo-
sure assessment. Although there is an extensive literature on mod-
eling exposure data under such imperfect measurement processes, 
including likelihood-based methods and multiple imputation, the 
standard practice continues to be naïve single imputation by a con-

stant (e.g., LOD / 2). In this article, we consider the situation

where, due to the practical logistics of data accrual, sampling, and 
resource constraints, exposure data are analyzed in multiple batches 
where the LOD and the proportion of censored observations differ 
across batches. Compounding this problem is the potential for non-
random assignment of samples to each batch, often driven by en-
rollment patterns and biosample storage. This issue is particularly 
important for binary outcome data where batches may have different 
levels of outcome enrichment. We first consider variants of existing 
methods to address varying LODs across multiple batches. We then 
propose a likelihood-based multiple imputation strategy to impute 

observations that are below the LOD while simultaneously account-
ing for differential batch assignment. Our simulation study shows 
that our proposed method has superior estimation properties (i.e., 
bias, coverage, statistical efficiency) compared to standard alter-
natives, provided that distributional assumptions are satisfied. A d-
ditionally, in most batch assignment configurations, complete-case 
analysis can be made unbiased by including batch indicator terms 
in the analysis model, although this strategy is less efficient relative 
to the proposed method. We illustrate our method by analyzing data 
from a cohort study in Puerto Rico that is investigating the relation 
between endocrine disruptor exposures and preterm birth.
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Estimating the effect of an environmental contaminant (X ) 
on a health outcome (Y ) is frequently affected by measure-

ment issues related to the quantification of low concentrations 
in biologic samples. These concentration levels are often sub-
ject to a left-censoring mechanism called the limit of detection 
(LOD), which is defined as the smallest concentration that can 
be reliably distinguished from a reference with no contamina-
tion.1 Thus far, the LOD literature has focused on one or mul-
tiple contaminants, each of which is uniformly subjected to a 
single LOD across all analyzed samples.2–4 However, in large 
cohort studies, it is often not feasible to assess all concentra-
tions in one batch and, furthermore, recalibration of the LOD 
between batches can cause the LOD to change. Moreover, 
samples are typically assayed on a rolling basis, implying that 
certain subject-level characteristics, which increase the like-
lihood of early enrollment, may be overrepresented in initial 
batches. In retrospective assaying of archived biosamples, 
simple storage strategies (e.g., storing “diseased” samples in 
one freezer) may create different enrichment of outcomes in 
batches. Nonrandom assignment of samples to batches com-
plicates matters by inducing a dependency between batch 
characteristics and the censoring mechanism itself.

The problem under consideration is motivated by an 
ongoing birth cohort study, The Puerto Rico Test site for 
Exploring Contamination Threats (PROTECT), which is a 
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multi-institutional effort to identify and understand the en-
vironmental risk factors contributing to a higher incidence 
of preterm birth in Puerto Rico, where 11.5% of live births 
occur prematurely.5 Preterm birth is the second leading cause of 
neonatal mortality in the United States and is associated with 
chronic respiratory complications, intestinal scarring, 
impaired cognitive development, and an elevated risk for sud-
den unexpected infant deaths.6–10 Urine samples of expecting 
mothers were collected at each trimester on a continuous basis 
but were analyzed in batches because of funding constraints 
and scientific interest in preliminary exposure data collection. 
For the present example, we focus on six of the 31 phthalate, 
phenol, paraben, and antibacterial agent concentrations that 
have two or more distinct LODs. The LOD changes were at-
tributable to assay recalibration before analyzing each batch.

It is natural for practitioners to adapt existing statis-
tical methods for handling LODs to this context. They can 
be divided into the following four broad classes: complete-
case analysis, single imputation with a constant value, like-
lihood-based estimation, and multiple imputation. Ignoring 
nondetects (i.e., complete-case analysis) is usually not prag-
matic, as it considerably reduces the number of available 
observations and can lead to major efficiency losses. Popular 

choices of constant imputation, such as LOD / 2, LOD / 2,  

E[ |X X < LOD], and E X[ |  >X LOD] , do not 
properly account for sampling variability below the 
LOD.3,4,11–13 Con-sequently, constant imputation results in 
biased parameter estimates, improperly estimated standard 
errors, and less than nominal coverage probabilities, particularly 
when the fraction of observations below the LOD is 
large.4,12,14,15

Two preferred methods are to either directly obtain re-
gression parameter estimates by maximizing a proper cen-
sored likelihood2,12,16–19 or to multiply impute values below 
the LOD and pool inference across imputed datasets.14,17,20–24 If 
distributional assumptions are satisfied, censored likelihood 
maximization has marginally better statistical efficiency com-
pared with multiple imputation, but is more computationally 
expensive and requires a separate implementation for each 
outcome model.21 In contrast, imputing nondetects conditional 
on multiple health outcomes of interest has a major practical 
advantage, in that epidemiologic investigators can multiply 
impute the exposure once and use the resulting imputed data-
sets for multiple outcome models. The imputation approach is 
also naturally amenable for extension to multiple pollutants.

Sequential multiple imputation strategies, such as 
multiple imputation (MI) using chained equations, are rou-
tinely used due to their availability in standard statistical 
software. However, a straightforward implementation of MI 
using chained equations that ignores the LOD structure does 
not guarantee that imputed values will fall below the LOD. 
To ensure that imputed values are below the LOD, we con-
sider censored likelihood multiple imputation (censored like-
lihood MI). The main idea behind censored likelihood MI is 

 

to construct a censored likelihood function derived from the 
conditional distribution of an exposure X  (censored at LOD 
if X LOD< ) given an outcome Y  and a vector of covariates 
C  and randomly generate samples from the fitted distribu-

tion of X X LOD Y C| , ,<{ }.17,21–23 Censored likelihood MI

strategies for handling nondetects have been examined in the 
context of generalized linear models and M-regression, with 
potentially multiple exposures;14,17,21,23,24 however, little work 
has been done to extend these concepts to varying detection 
limits. Arunajadai et al.22 investigated multiple LODs, but did 
not consider potential structural bias induced by differential 
batch enrichment.

The goal of this study is to evaluate the performance of 
common LOD solutions under changing LODs and different 
mechanisms for sample allocation to batches. Specifically, we 
propose an extension of the censored likelihood MI strategy 
outlined in Lubin et al.14 for handling such data and compare 
this method, via extensive simulation study, to complete-case 

analysis, substitution by LOD / 2, and MI using chained 
equations. We then apply these methods to the PROTECT 
dataset to assess the relation between endocrine disruptor 
exposures and preterm birth.

METHODS
We first briefly review existing methods for handling the 

LOD problem in exposure assessment, and then propose new 
remedies for the situation in which the LOD changes across 
batches. Let X jl denote the true exposure for the l-th obser-
vation in batch j ( j m= 1,  ,…  and l nj= 1, ,… ), with a known
distribution. For simplicity, we assume X jl is normally distrib-
uted. Suppose that the underlying model for the binary out-
come, Yjl, is given by

logit � � Eπ jl jlX( ) = + +β β0 ββC
T

jlC ,

where π jl jl jlP Y X= =( )| ,1 Cjl ; C C Cjl jl jl= ( )1 2, , where

Cjl1 is the set of confounders, and Cjl2 is the set of precision

variables that are correlated with Yjl but unrelated to X jl. Our

focus is to find a consistent estimator β̂E for βE and its corre-

sponding standard error estimate SE Êβ( ) when the X jl’s are

below the LOD for batch j (denoted as LODj).

Existing Methods for Analyzing Data Subject 
to LOD

To characterize the impact of multiple LODs, we define 
the underlying conceptual variable Zjl:

Z Z X LOD
Z X LODjl
jl jl j

jl jl j
=
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That is, we assume that observations above LODj have no meas-
urement error, i.e., Z Xjl jl

obs = . Although this assumption may



be violated in practice, the goal of this study is to understand 
the impact of changing LODs across multiple batches on the 
resultant inference, not the joint impact of multiple LODs and 
exposure measurement error (which is also an important issue).

Complete-case analysis removes observations, where 

X LODjl j<  and fits a logistic model on Zjl
obs only. Constant

imputation replaces Zjl
mis  with a batch-specific constant, i.e.,

LODj / 2 , and fits a logistic model on Zjl
obs plus imputed

values. Multiple imputation generates multiple random draws 

from the stochastic distribution of Zjl
mis conditional on Zjl

obs, 
outcomes, batch indicators, and other covariates.

For each single or multiply imputed dataset, an estimate 
of the outcome–exposure association is then obtained by fit-

ting a logistic regression model Y Zjl jl|  ,Cjl{ }. However, the

issue of multiple batches subject to differential enrichment 
of disease states (and/or potentially important confounders) 
introduces a new complexity to the problem. One way to con-
trol for this in the analysis model is to include batch indicators 
such that the postimputation analysis model becomes,

logit Batch
Ba

θ α α α
α

jl E jl b

b

Z I jl
I jlm

( ) = + + + ∈( )
+ + ∈

0 2 2ααC
T

jlC
� ttch ,m( ) � (1)

where θ jl jl jl jlP Y Z= =( )| , ,1 Cjl Batch . For multiple impu-

tation, the estimates are then pooled, properly accounting for 
imputation uncertainty within and between the imputed datas-
ets.25–27 Going forward, we will denote the estimate of αE from
analysis model (1) with batch indicators as β̂E

WBI and the esti-
mate of αE from analysis model (1) with no batch indicators

(i.e., setting α αb bm2 0= = =� ) as β̂E
NBI, to explicitly establish

the link between our analysis models and the true model. Both 
outcome models (with and without batch indicators) will be 
considered throughout the simulation study. Since our proposed 
framework is multiple imputation based on censored likelihood 
maximization, we will discuss that approach in greater detail.

Proposed Method: Censored Likelihood MI
The main goal of censored likelihood MI is to es-

timate the conditional cumulative distribution func-
tion of X Yjl jl| ,Cjl1{ }, draw random values from the
conditional distribution X Y X LODjl jl jl j| , ,Cjl1 <{ }, and fit
a logistic regression on each imputed dataset. Suppose that
X Y N Yjl jl jl| ,  ~  , C Cjl

T
jl1 0 1 1

2{ } + +( )γ γ σγγ . That is, we
assume the distribution of underlying contaminant concentra-
tions does not depend on batch assignment. The likelihood 
can be written as:

L γ γ σ0 1
2, , ,γγ( ) ∝

j

m

l

n
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X
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where δ X I X LODjl jl j( ) = <( ) is the censoring indicator

function for observation l in batch j and φ X jl ⋅( ) and ΦX jl ⋅( )
are the probability density function and cumulative distribu-

tion function of the conditional distribution of X Yjl jl| ,Cjl1{ }.
Note that it is important to condition on disease status (Y ) in 

the likelihood. A likelihood ignoring Y  will result in regres-
sion parameters biased toward the null, when a true associa-
tion between Y  and X  conditional on C  exists.

To obtain one imputed dataset:
(i)  �Draw a bootstrapped dataset Y Xjl jl

* *,  , Cjl1
*{ } of the same

size as the original dataset.
 (ii)  �Using the censored likelihood, obtain maximum-

likelihood estimates ˆ , ˆ , ˆ* *γ γ0 1 γγ* , and ˆ *σ2  for the boot-
strapped dataset. The estimate of ΦX jl , 

ˆ*ΦX jl , is the
cumulative distribution function corresponding to a

N Yjlˆ ˆ ˆ , ˆ* * * * *γ γ σ0 1 1
2+ + ( )







γγ

T
jlC*  distribution.

(iii)  �For every observation in the bootstrapped data-
set such that X LODjl j

* < , randomly draw

q LODjl X jjl
* *, ˆ  ∼ ( )( )Unif 0 Φ  and obtain the corre-

sponding quantile Z qjl X jljl
mis* * *ˆ= ( )−Φ 1 .

Repeat this procedure K  times to get K  imputed datasets. 
Pooled inference follows from Rubin’s combination rules.25–27

Simulation Design
We consider moderate-sized (N = 1,000) and large (N = 

5,000) cohort studies, both of which have two distinct batches. 
Within each study, both batches will have three choices for the 
extent of censoring: light (15% below the LOD), moderate (30% 

below the LOD), and heavy censoring (60% below the LOD). 

For notational convenience, we will denote P1 and P2 as the per-
centage of observations below LOD1 and LOD2, respectively.

Generative Models
Suppose we have a contaminant of interest (X ) that 

depends on two binary covariates, say smoking (S ) and gender 
(G), such that:

X S G N S Gi i i i i| ,  ~  . . . ,  . .{ } − + ⋅ + ⋅( )0 5 1 25 1 25 1 152

Further, suppose that the true generative model for the binary 
outcome is given by:

logit log � log logπi i i iX S G( ) = − + ( ) ⋅ + ( ) ⋅ + ( ) ⋅2 68 1 5 1 25 1 25.   . . . ,

where πi i i i iP Y X S G= =( | , , )1 . The intercept was deter-
mined by fixing the marginal prevalence of the outcome in the 

overall simulated population at P Yi =( ) =1 0 1. .

Batch Assignment
There are four assignment schemes of individuals to 

batches: (a) completely at random, (b) dependent on Y , (c) 



dependent only on covariates, and (d) dependent on both Y  
and covariates. The general form of the allocation model is 
as follows:

logit BatchP i Y S GY i S i G i∈( )( ) = + ⋅ + +1 0η η η η

β̂ β̂

We discuss the results for scenarios (a), (b), and (c); the results 
for scenario (d) are expected to be very similar to (b). For (b), 
η0 = − .0 13, ηY = 1 5. , and η =ηS G = 0, so that the two batches
have an equal number of subjects and P(Batch |Yi =1 1 =) .0 8 . 
As a sensitivity check, we also considered a modified (b) setting 
where P(Batch |Yi =1 1 =) .0 6  (see eAppendix 1; http://links. 
lww.com/EDE/B547 for detailed results). For (c), η0 = .0 73, 
ηY = 0, ηS = 1 5. , and ηG = −2, such that the two batches have

an equal number of subjects and P(Batch |Yi =1 1 ≈) .0 5 . That 
is, we selected coefficients in (c) such that batch assignment 
conditional on covariate values did not inadvertently intro-
duce a dependency on outcome status. Note that the single-
batch scenario, a special case where both batches have the 
same LOD, can be ascertained from assignment scheme (a) 
when P =1 2P (see eTable 1; http://links.lww.com/EDE/B547). 

Using 1000 simulated datasets, we will compare the 
proposed censored likelihood MI with complete-case anal-

ysis, constant imputation with LODj / 2  for batch j (denoted 
as LOD / 2), and MI using chained equations by fitting anal-
ysis model (1) with and without batch indicators. Specifically, 
we will evaluate the methods in terms of relative bias (denoted 

as RB�ias), mean-squared error (denoted as M�SE), and 95%

coverage probability (denoted as CP� ) of E
WBI and E

NBI. Ex-
plicit evaluation metric definitions are provided in eAppendix 
1; http://links.lww.com/EDE/B547.

Data Example: Application to the PROTECT 
Cohort

The PROTECT study is a prospective cohort study in 
Puerto Rico that is investigating the relation between expo-
sure to environmental contaminants and preterm birth. For the 
present analysis, we are specifically interested in phthalates, 
phenols, parabens, and antibacterial agents, which are com-
monly found in industrial plastics, cosmetics, and pesticides. 
Exposure typically occurs through the use of personal care 
products, such as shampoos and deodorants, and the con-
sumption of packaged food/beverages. Endocrine disruptors 
have been linked to a plethora of adverse health outcomes, 
including earlier onset of puberty, infertility, adverse birth 
outcomes and neurodevelopment, diabetes, and altered sex 
steroid and thyroid hormone levels.28–32 The dataset contains 
1004 participants, with 31 different contaminants measured 
longitudinally at three different visits, with median gestational 
age of 18, 22, and 26 weeks, respectively. Recruitment was 
initiated in 2010 and, since then, samples were shipped to the 
US Centers for Disease Control and Prevention (CDC) on a 
rolling basis for measurement of urinary phthalate metabolite 

 

and phenol concentrations by solid phase extraction high-
performance liquid chromatography–isotope dilution tandem 
mass spectrometry.33 Batches were analyzed in the order that 
they were received. Because of this study protocol, a subset 
of contaminants had multiple LODs, six of which we use in 
our illustrative data example. Further details regarding study 
design and data collection can be found in Cantonwine et al. 
and Meeker et al.33,34 Ethics and Research Committees at the 
University of Puerto Rico, the University of Michigan School 
of Public Health, Northeastern University, and the participat-
ing clinics reviewed and approved the study protocol. The 
involvement of the CDC laboratory was determined not to 
constitute engagement in human subjects’ research. The study 
was thoroughly explained to every study participant and all 
participating women gave informed consent before enrolling.

Analytic Dataset
We consider log-transformed mono-(2-ethylhexyl) 

phthalate (MEHP), mono-(3-carboxypropyl) phthalate 
(MCPP), butylparaben (BPB), bisphenol F (BPF), triclosan 
(TCS), and triclocarban (TCC) measured at visits 1 and 2. 
Since visit 1 and visit 2 do not necessarily contain the same 
subjects, we include the maximum number of subjects avail-
able at each visit in our analysis models. For MEHP, MCPP, 
BPB, and TCS, visit 1 consists of 43 spontaneous preterm 
deliveries and 583 full-term deliveries, whereas visit 2 has 
42 spontaneous preterm deliveries and 598 full-term deliv-
eries. BPF and TCC were only measured on a subset of 
subjects; therefore, visit 1 contains 31 spontaneous preterm 
deliveries and 355 full-term deliveries, while visit 2 con-
sists of 31 spontaneous preterm deliveries and 351 full-term 
deliveries.

Statistical Analysis
To illustrate the use of complete-case analysis, 

LOD / 2, MI using chained equations, and censored 

likelihood MI, we fit analysis model (1) with a batch indi-
cator at each visit. For the censored likelihood MI, C1 cor-
responds to specific gravity, while C2 contains maternal
age, employment status, and parity. All simulations and 
analyses were performed using R statistical software, ver-
sion 3.3.1. An R implementation of the censored like-
lihood MI is available at https://github.com/bossjona/
Single-Pollutant-Multiple-LODs.

RESULTS

Simulation Study
Here we present results for the moderate-sized study 

under analysis models with and without batch indicators. For 
the large study, general trends across the methods were sim-
ilar, and hence are relegated to eTable 2; http://links.lww.com/
EDE/B547, eFigure 1a; http://links.lww.com/EDE/B547, and 
eFigure 1b; http://links.lww.com/EDE/B547.
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Random Batch Assignment
Panels A and B in eFigure 1c; http://links.lww.com/

EDE/B547 present relative bias results, panels A and B in 
eFigure 1d; http://links.lww.com/EDE/B547 present mean 
squared error (MSE) results, and Table 1 presents the empir-
ical coverage probabilities.

Regardless of the inclusion of a batch indicator, com-

plete-case analysis and censored likelihood MI are generally 

unbiased across all scenarios, while LOD / 2 is almost always 

biased. The resulting bias induced by LOD / 2 increased as 

more observations became censored, regardless of whether a 
batch indicator was included. In analysis model (1) without a 
batch indicator, a naïve implementation of MI using chained 

equations results in biases when either P P1 2�  or P P2 1�

(e.g., RBias E
� ˆ . %βNBI( ) = −13 4 , when P1 60= % and P2 15= %;

eFigure 1c; http://links.lww.com/EDE/B547, panel A).
In general, MI using chained equations has the larg-

est MSE, which is primarily driven by the large standard 
deviations associated with pooled parameter estimates. 
eFigure 1d (http://links.lww.com/EDE/B547) shows that, 

TABLE 1.  Empirical Coverage Probabilities of 95% Confidence Intervals with N = 1,000

LOD Info

Empirical Coverage Probability

With Batch Indicator (β̂βE
WBI ) Without Batch Indicator (β̂βE

NBI )

CCA LOD / 2 MICE CLMI CCA LOD / 2 MICE CLMI

Randoma

 �������(15, 15)b 0.958 0.959 0.952 0.958 0.960 0.959 0.950 0.957

 �������(15, 30) 0.953 0.957 0.957 0.956 0.957 0.957 0.956 0.954

 �������(15, 60) 0.952 0.951 0.949 0.961 0.955 0.950 0.922 0.961

 �������(30, 15) 0.962 0.961 0.961 0.961 0.963 0.963 0.963 0.958

 �������(30, 30) 0.963 0.957 0.951 0.962 0.964 0.960 0.951 0.963

 �������(30, 60) 0.959 0.942 0.953 0.962 0.955 0.945 0.946 0.963

 �������(60, 15) 0.959 0.950 0.965 0.956 0.957 0.957 0.942 0.955

 �������(60, 30) 0.963 0.945 0.957 0.957 0.964 0.951 0.952 0.956

 �������(60, 60) 0.962 0.910 0.942 0.955 0.964 0.912 0.943 0.953

Outcome-dependentc

 �������(15, 15) 0.958 0.952 0.957 0.953 0.961 0.960 0.957 0.958

 �������(15, 30) 0.955 0.954 0.957 0.955 0.933 0.958 0.928 0.958

 �������(15, 60) 0.949 0.953 0.947 0.951 0.762 0.912 0.511 0.958

 �������(30, 15) 0.953 0.948 0.945 0.954 0.935 0.956 0.931 0.953

 �������(30, 30) 0.962 0.951 0.955 0.958 0.961 0.959 0.955 0.959

 �������(30, 60) 0.951 0.949 0.943 0.956 0.823 0.942 0.772 0.955

 �������(60, 15) 0.965 0.933 0.960 0.948 0.666 0.847 0.870 0.956

 �������(60, 30) 0.958 0.929 0.965 0.956 0.763 0.833 0.880 0.958

 �������(60, 60) 0.955 0.917 0.948 0.950 0.957 0.895 0.947 0.961

Covariate-dependentd

 �������(15, 15) 0.955 0.959 0.955 0.956 0.957 0.962 0.957 0.956

 �������(15, 30) 0.956 0.965 0.957 0.956 0.961 0.964 0.957 0.957

 �������(15, 60) 0.953 0.952 0.961 0.952 0.961 0.954 0.940 0.952

 �������(30, 15) 0.955 0.958 0.954 0.955 0.955 0.957 0.952 0.955

 �������(30, 30) 0.959 0.962 0.954 0.954 0.964 0.964 0.952 0.956

 �������(30, 60) 0.957 0.943 0.963 0.962 0.958 0.949 0.958 0.962

 �������(60, 15) 0.953 0.954 0.944 0.961 0.957 0.953 0.942 0.963

 �������(60, 30) 0.958 0.941 0.953 0.963 0.957 0.946 0.954 0.961

 �������(60, 60) 0.967 0.911 0.953 0.952 0.965 0.911 0.956 0.951

a“Random” refers to random batch assignment.
bThe notation (A, B) means that approximately A% of observations in Batch 1 were below the Batch 1 LOD and approximately B% of observations in Batch 2 were below the 

Batch 2 LOD.
c“Outcome-dependent” refers to batch assignment that depends on Y  when P YiBatch | .1 1 0 8=( ) = .
d“Covariate-dependent” refers to batch assignment that depends on S  and G.
CCA indicates complete-case analysis; CLMI, censored likelihood multiple imputation; LOD, limit of detection; MICE, multiple imputation using chained equations; LOD / 2 ,  

constant imputation with LOD / 2 .
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when P1 60= % and P2 60= %, this method results in

MSE MSEWBI NBI� �ˆ ˆ . .β βE E( ) = ( ) = 0 041  In comparison, com-

plete-case analysis (MSE MSEWBI NBI� �ˆ ˆ .β βE E( ) = ( ) = 0 030), 

LOD / 2 (MSE WBI� ˆ .βE( ) =0 022 and MSE NBI� ˆ .βE( ) =0 021), and

censored likelihood MI (MSE MSEWBI NBI� �ˆ ˆ .β βE E( ) = ( ) =0 012)  

have smaller MSEs (see eFigure 1d; http://links.lww.com/

EDE/B547). Note that complete-case analysis still has larger 
MSE, because deleting observations below the LOD is ineffi-

cient, especially when exposure data are subject to heavy cen-

soring. For LOD / 2, the reduction in MSE is due to smaller 

variation (MSE for LOD / 2 is mainly driven by the bias). 

Censored likelihood MI has a uniformly smaller MSE com-

pared to complete-case analysis, MI using chained equations, 

and LOD / 2.
In analysis model (1) with and without a batch indi-

cator, complete-case analysis and censored likelihood MI 
have proper coverage probabilities. MI using chained equa-
tions occasionally has less than nominal coverage for the 
analysis model without a batch indicator when the fraction 
of censored observations differs across batches (for instance, 

when P1 15= % and P2 60= %, CP E
� ˆ .βNBI( ) = 0 922; Table 1),

but has improved coverage when a batch indicator is included 

(when P1 15= % and P2 60= %, CP E
� ˆ .βWBI( ) = 0 949; Table 1).

LOD / 2 falls below the nominal coverage probability when 
P P1 2 60= = %, whether or not a batch indicator is included in

the analysis model (CP E
� ˆ .βWBI( ) = 0 910, CP E

� ˆ .βNBI( ) = 0 912;

Table 1).

Outcome-dependent Batch Assignment
Panels A and B in Figure present relative bias 

results, panels C and D in Figure present MSE results, and 
Table  1 presents the empirical coverage probabilities when 

P Yi(Batch | ) .1 1 0 8= = . Results for the analysis model with a
batch indicator were similar to the random batch assignment 
scenario. Therefore, the following discussion will focus on the 
analysis model without a batch indicator.

Under moderate and heavy censoring, complete-case 
analysis and MI using chained equations have very large biases. 

For example, when P1 15= % and P E2 60= ( )%,  ˆRBias NBI� β  

is −35.7% for CCA, while RBias NBI� β̂E( ) is −61.8% for MI

using chained equations (see Figure A). Relative biases for 

LOD / 2 are large across all LOD pairs, however, LOD / 2 

outperforms CCA with respect to bias whenever P P1 2↑

(RBias NBI� ˆ . %βE( ) = −12 2 , when P1 15= % and P2 60= %;

Figure A). Censored likelihood MI leads to drastically lower 

relative biases compared with CCA, MICE, and LOD / 2 

 

(RBias NBI� ˆ . %,βE( ) = 0 6  when P1 15= % and P2 60= %; Figure

A). Figure C shows that, across all P P1 2,( ) pairs, complete-

case analysis and MI using chained equations have larger 

MSE than LOD / 2. Censored likelihood MI uniformly out-

performs MI using chained equations, complete-case analysis, 

and LOD / 2.
Our proposed method has nominal coverage probabili-

ties across all LOD pairs, whereas complete-case analysis, MI 

using chained equations, and LOD / 2 often fall well below 

the nominal coverage probability. Notably, when P1 60= % and 

P2 30= %, the coverage probabilities are CP E
� ˆ .βNBI( ) = 0 763 

for complete-case analysis, CP E
� ˆ .βNBI( ) = 0 880 for MI using

chained equations, CP E
� ˆ .βNBI( ) = 0 833 for LOD / 2, and

CP E
� ˆ .βNBI( ) = 0 958 for censored likelihood MI (see Table 1).

When P Yi(Batch � � |1 1 0 6= =) . , the relative bias
and MSE patterns are virtually identical to the to the 

P YiBatch� � �1 1 0 8| .=( ) =  case, the only exception being that

the magnitude of the relative bias and MSE are smaller (see 
eFigure 2a; http://links.lww.com/EDE/B547 and eFigure2b; 
http://links.lww.com/EDE/B547).

Covariate-dependent Batch Assignment
Panels E and F in eFigure 1c (http://links.lww.com/

EDE/B547) present relative bias results, panels E and F in 
eFigure 1d (http://links.lww.com/EDE/B547) present MSE 
results, and Table 1 presents the empirical coverage probabili-
ties. Results were comparable to random batch assignment. 
Recall that the covariate-dependent batch allocation model 
did not introduce differential batch assignment by outcome, 
implying that outcome-dependent batch assignment is partic-

ularly problematic for complete-case analysis, LOD / 2, and 

MI using chained equations.

Summary
Table  2 summarizes the simulation study results pre-

sented in Figure, eFigure 1c; http://links.lww.com/EDE/B547 
and eFigure 1d; http://links.lww.com/EDE/B547, and Table 1. 
Complete-case analysis and censored likelihood MI have low 
bias and accurate coverage probability when batch indicators 
are included in the analysis model. However, censored like-
lihood MI provides an efficiency gain and is the uniformly 
preferred method when more than 15% of observations fall 

below the LOD (in terms of both bias and MSE). LOD / 2 

and MI using chained equations are not recommended, as 
they can have large biases, improperly estimated or inflated 
standard errors, and less than nominal coverage.

PROTECT Data Analysis
At both visits 1 and 2, women who had spontaneous pre-

term deliveries were older on average, had a higher rate of 
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unemployment, and had proportionately higher parity compared 
with women with full-term deliveries (see eTable 3; http://links. 
lww.com/EDE/B547). LOD summary information for contami-
nants, provided in eTable 4; http://links.lww.com/EDE/B547, 

shows that MEHP, MCPP, TCS, and TCC all have approximately 
10%–15% samples below two distinct LODs, while BPF has 
51.0% below the LOD at visit 1 and 52.1% at visit 2 (see eFigure 
3; http://links.lww.com/EDE/B547 for contaminant distributions). 
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FIGURE.  Relative bias and mean-squared error (MSE) at various LOD combinations in a simulated, moderately-sized cohort study 
(N = 1,000) with outcome-dependent batch assignment (P Batch Yi| .1 1 0 8=( ) = ). The first and second numbers in the LOD
pair correspond to the percent of observations below batch 1 LOD and batch 2 LOD, respectively. Panels A and C correspond to 
an analysis model without a batch indicator and panels B and D correspond to an analysis model with a batch indicator. In panels 
A and B, the bolded black line indicates a relative bias of 0% (true βE = ( )log 1 5. ). In panels C and D, the bolded line indicates
the gold-standard MSE (no observations subject to censoring). CCA, complete-case analysis; CLMI, censored likelihood multiple 
imputation; LOD, limit of detection; MICE, multiple imputation using chained equations; LOD / 2, constant imputation with 
LOD / 2. Figure is available in color online.
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BPB is the only contaminant with four distinct LODs and has a 
sizable overall percent of samples below the LOD (37.4% at visit 
1 and 43.3% at visit 2).

Table 3 shows that, as the percent of samples below 
LOD increased, the point estimates of the log-odds ratios dif-
fered more across methods, while censored likelihood MI had 
the uniformly smallest standard error and, consequently, the 
narrowest confidence intervals (CI). For BPF, the only con-
taminant with over 50% below the LOD in both visits 1 and 
2, we observed that the point estimate using complete-case 
analysis was numerically quite different from the other esti-
mates. This could be because complete-case analysis retained 
few spontaneous preterm deliveries in visit 1 and 2, making 
estimation of the analysis model unstable. One noteworthy 
clinical finding is that all four methods identified a significant 
association between TCC exposure and spontaneous preterm 
delivery at visit 1 (censored likelihood MI: βE = 0.254, 95% 
CI: 0.084, 0.425; Table 3); for a more detailed discussion see 
Aker et al.35

DISCUSSION
In this article, we proposed censored likelihood MI, a 

multiple imputation scheme to reconstruct the left-tail of a 
multiple-censored contaminant distribution such that proper 

statistical inference is made. Across a range of simulation 
scenarios, censored likelihood MI resulted in unbiased pa-
rameter estimates and correct coverage probabilities. Further-
more, censored likelihood MI was more efficient than other 
approaches such as complete-case analysis and MI using 
chained equations, evidenced by uniformly smaller standard 
deviations over all simulation settings.

When dealing with exposures assayed across multiple 
batches, observations may be unevenly assigned to batches 
with respect to the outcome of interest or potential confound-
ers. Investigators should be mindful of the sample allocation 
scheme for exposure assays to minimize potential bias related 
to outcome enrichment. If imbalance occurs in batch alloca-
tion, censored likelihood MI is robust to such disparities, even 
when there are many distinct batches (see eAppendix 2; http://
links.lww.com/EDE/B547, for an additional simulation study 
exploring the robustness of censored likelihood MI to the total 
number of batches).

Another natural question that arises is the robustness of 
censored likelihood MI to distributional misspecification. Our 
simulations evaluating the impact of a misspecified distribu-
tion of X  (X  generated from a mixture of normal distributions 
or a gamma distribution) show that our method has at most an 
8% relative bias across all LOD pairs (see eAppendix 3; http://
links.lww.com/EDE/B547).

In the data example, we illustrated our method and com-

pared the results against complete-case analysis, LOD / 2,  
and MI using chained equations, where each pollutant was 
analyzed separately. One promising future research direc-
tion is whether censored likelihood MI can be extended to 
the multivariate scenario where we want to model all six con-
taminants jointly. This is an important consideration, given 
the shift in environmental epidemiology toward large-scale 
multipollutant studies.36,37 One could easily conceptualize 
censored likelihood MI in a multipollutant setting with p con-
taminants by constructing a conditional censored likelihood 
under a multivariate normal distributional assumption, i.e., 

X X Y MVNi ip i1 1, , | ,  ~  ,… Ci{ } ( )µ Σ . However, as the number

of pollutants gets large, the multivariate normal assumption 
becomes tougher to satisfy and, even if it is satisfied, high-
dimensional censored-likelihood maximization can be com-
putationally challenging.

One theme throughout the simulation study that deserves 
further comment is the general unbiasedness of complete-
case analysis, despite the LOD being a nonignorable missing 
data mechanism. Little and Rubin13 claim that complete-case 
analysis results in unbiased regression parameter estimates 
if the probability of being a complete case depends only on 
the observed contaminant concentration and adjustment 
covariates (i.e., missing at random). In our simulation study, 
generating batch conditional on a binary health outcome Y  im-
plicitly introduced confounding by batch, which, when unac-
counted for in the analysis model, biased parameter estimates 

TABLE 2.  LOD Simulation Study Properties when a Batch 
Indicator is Included in the Analysis Model

% Below LOD

Method 0%–15% 15%–30% 30%–60%

CCA Absolute relative Bias 1.0%–1.8% 0.7%–1.8% 0.3%–3.6%

Relative variancea 1.2x–1.3x 1.2x–1.7x 1.3x–2.8x

MSE ratiob 1.2x–1.3x 1.2x–1.7x 1.3x–2.8x

Coverage 95%–96% 95%–96% 94%–97%

LOD / 2 Absolute relative bias 2.4%–3.0% 3.1%–7.1% 4.3%–20.2%

Relative variance 1.0x 1.0x–1.1x 1.1x–1.4x

MSE ratio 1.0x–1.1x 1.1x–1.5x 1.1x–4.2x

Coverage 94%–96% 91%–97% 69%–95%

MICE Absolute relative bias 0.6%–1.4% 0.0%–1.8% 0.6%–7.8%

Relative variance 1.2x–1.4x 1.3x–1.9x 1.4x–4.1x

MSE ratio 1.2x–1.4x 1.3x–1.9x 1.4x–4.1x

Coverage 95%–96% 95%–96% 93%–98%

CLMI Absolute relative bias 0.0%–0.8% 0.1%–0.9% 0.0%–1.3%

Relative variance 1.0x 1.0x 1.0x

MSE ratio 1.0x 1.0x 1.0x

Coverage 95%–96% 95%–96% 95%–96%

aRelative variance is reported with respect to CLMI. As an example, relative variance 
ranging between 1.2x and 1.3x for CCA means that, depending on the simulation setting, 
CCA is between 1.2 and 1.3 times less efficient compared with CLMI.

bRatio of MSEs is reported with respect to CLMI. As an example, MSE ratio ranging 
from 1.2x to 1.3x for CCA means that, depending on the simulation setting, CCA has 
between a 1.2 and 1.3 times higher MSE compared to CLMI.

CCA indicates complete-case analysis; CLMI, censored likelihood multiple 

imputation; LOD, limit of detection; MSE, mean-squared error; Rel, relative; LOD / 2 ,  

constant imputation with LOD / 2.
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obtained from complete-case analysis. It is important to note 
that complete-case analysis without batch indicators can pro-
duce biased estimates.

CONCLUSION
Although LOD / 2 and complete-case analysis are 

convenient, inference can be heavily distorted or have low 
power to detect a true signal, respectively. These issues are 
amplified in the multiple batch scenario with differential batch 
enrichment if a batch indicator is not included in the anal-
ysis model. Censored likelihood MI generates efficient, un-
biased parameter estimates when parametric assumptions are 
correct. It is imperative that researchers in environmental epi-
demiology understand the biases and efficiency losses of com-
monplace LOD solutions in the presence of differential batch 
enrichment and place a methodological emphasis on statisti-
cally rigorous solutions to rectify left-censored exposure data.
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